Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# catena-Poly[[bis[1-(2-hydroxyethyl)-1H-tetrazole- $\kappa N^{4}$ ]copper(II)]-di- $\mu$-chlorido]: a powder study 

Ludmila S. Ivashkevich,* Alexander S. Lyakhov, Tatiyana V. Serebryanskaya and Pavel N. Gaponik

Research Institute for Physico-Chemical Problems, Belarusian State University, Leningradskaya Str. 14, Minsk 220030, Belarus
Correspondence e-mail: iva@bsu.by
Received 20 June 2008; accepted 15 July 2008
Key indicators: powder X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{Cu}-\mathrm{N})=0.010 \AA$; disorder in main residue; $R$ factor $=0.042 ; w R$ factor $=0.067$.

The crystal structure of the title polymeric complex, $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\right]_{n}$, was obtained by the Rietveld refinement from laboratory X-ray powder diffraction data collected at room temperature. The unique $\mathrm{Cu}^{\mathrm{II}}$ ion lies on an inversion center and is in a slightly distorted octahedral coordination environment. In the hydroxyethyl group, all H atoms, the O atom and its attached C atom are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4 . The OH group is involved in an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

## Related literature

For related literature, see: Ivashkevich et al. (2001); Ivashkevich, Lyakhov et al. (2005); Ivashkevich, Voitekhovich \& Lyakhov (2005); Stassen et al. (2002); Werner et al. (1985); Allen (2002); Virovets et al. $(1995,1996)$.


## Experimental

Crystal data
$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=362.69$
Monoclinic, $P 2_{1} / c$
$a=13.3349$ (11) $\AA$
$b=6.7406$ (6) $\AA$
$c=7.3419$ (5) $\AA$
$\beta=105.450(8)^{\circ}$ 。
$V=636.08(9) \AA^{3}$

## Data collection

HZG-4A (Carl Zeiss, Jena) diffractometer
Specimen mounting: packed powder pellet

## Refinement

$R_{\mathrm{p}}=0.042$
$R_{\mathrm{wp}}=0.067$
$R_{\text {exp }}=0.086$
$R_{\mathrm{B}}=0.029$
$S=0.78$
Wavelength of incident radiation: 1.5418 Å

Excluded region(s): none
$Z=2$
$\mathrm{Cu} K \alpha$ radiation
$T=295$ (2) K
Specimen shape: flat sheet
$30 \times 30 \times 1 \mathrm{~mm}$
Specimen prepared at 100 kPa
Specimen prepared at 295(2) K
Particle morphology: plate, green

Specimen mounted in reflection mode
Scan method: step
$2 \theta_{\text {min }}=5.0,2 \theta_{\text {max }}=100.0^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

Profile function: pseudo-Voigt
785 reflections
48 parameters
21 restraints
H -atom parameters constrained Preferred orientation correction: Marsh-Dollase function (Marsh, 1932; Dollase, 1986)

Table 1
Selected geometric parameters ( $\left(\AA{ }^{\circ}\right)$.

| $\mathrm{Cu}-\mathrm{Cl}$ | $2.234(7)$ | $\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $3.008(7)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Cu}-\mathrm{N} 4$ | $1.979(10)$ | $\mathrm{Cu}-\mathrm{Cu}^{\mathrm{ii}}$ | $4.9835(4)$ |
|  |  |  |  |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N} 4$ | $89.8(7)$ | $\mathrm{Cl}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 4$ | $92.6(5)$ |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ | $90.8(2)$ | $\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 4^{\text {iii }}$ | 180 |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\text {iii }}$ | 180 | $\mathrm{Cl}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 4$ | $87.4(5)$ |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N}^{\text {iii }}$ | $90.2(7)$ | $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}^{\mathrm{ii}}$ | $143.5(2)$ |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\text {iv }}$ | $89.2(2)$ |  |  |
| Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x,-y,-z+1$; (iv) |  |  |  |
| $x,-y+\frac{1}{2}, z+\frac{1}{2}$. |  |  |  |

Table 2
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1-H1 $\cdots \mathrm{N} 2$ | 0.82 | 2.35 | $3.08(3)$ | 149 |
| O2-H2 $\cdots \mathrm{N} 2$ | 0.82 | 2.46 | $3.02(3)$ | 126 |
| C5-H5 $\cdots \mathrm{Cl}^{\mathrm{ii}}$ | 0.93 | 2.72 | $3.34(2)$ | 126 |

Symmetry code: (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: local program; cell refinement: FULLPROF (Rodríguez-Carvajal, 2001); data reduction: local program; program(s) used to refine structure: FULLPROF and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: FULLPROF and PLATON.

[^0]
## metal-organic compounds

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ivashkevich, D. O., Lyakhov, A. S., Gaponik, P. N., Bogatikov, A. N. \& Govorova, A. A. (2001). Acta Cryst. E57, m335-m337.
Ivashkevich, L. S., Lyakhov, A. S., Ivashkevich, D. O., Degtyarik, M. M. \& Gaponik, P. N. (2005). Russ. J. Inorg. Chem. 50, 78-82.
Ivashkevich, D. O., Voitekhovich, S. V. \& Lyakhov, A. S. (2005). XXII International Chugaev Conference on Coordination Chemistry, Kishinev, 2005. Book of Abstracts, p. 371

Marsh, A. (1932). Z. Kristallogr. 81, 285-297
Rodríguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stassen, A. F., Kooijman, H., Spek, A. L., Jos de Jongh, L., Haasnoot, J. G. \& Reedijk, J. (2002). Inorg. Chem. 41, 6468-6473.
Virovets, A. V., Baidina, I. A., Alekseev, V. I., Podberezskaya, N. V. \& Lavrenova, L. G. (1996). Zh. Strukt. Khim. 37, 330-336.
Virovets, A. V., Podberezskaya, N. V., Lavrenova, L. G. \& Bikzhanova, G. A. (1995). Acta Cryst. C51, 1084-1087.

Werner, P.-E., Eriksson, L. \& Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.

## supplementary materials

# catena-Poly[[bis[1-(2-hydroxyethyl)-1H-tetrazole- $\left.\kappa N^{4}\right] \operatorname{copper}($ II) $]$-di- $\mu$-chlorido]: a powder study 

L. S. Ivashkevich, A. S. Lyakhov, T. V. Serebryanskaya and P. N. Gaponik

## Comment

Complexes of copper(II) chloride with substituted tetrazoles attract attention because of their magnetic bahaviour at low temperatures. Among them, there are layered coordination polymers with square grids of only Cu and Cl atoms, of the composition $\mathrm{CuCl}_{2} L_{2}$, where $L=1$-ethyltetrazole (Virovets et al., 1995), 1-allyltetrazole (Virovets et al., 1996), 1-(2-azidoethyl)terazole (Ivashkevich et al., 2001), 1-(2-chloroethyl)tetrazole (Stassen et al., 2002), 1-benzyltetrazole (Ivashkevich, Voitekhovich \& Lyakhov, 2005), and 1-methyltetrazole (Ivashkevich, Lyakhov, Ivashkevich, Degtyarik \& Gaponik, 2005). These compounds crystallize in the space group $P 2_{1} / c$ and are isotypic. Here, we present another example, poly[[bis(1-(2-hydroxyethyl)tetrazole- $N^{4}$ )copper(II)]-di- $\mu$-chloro], (I), (Fig. 1). As it is difficult to obtain single crystals for structural analysis, the compound (I) was investigated by X-ray powder diffraction.

The Cu atom lies on inversion center and shows a slightly distorted octahedral coordination environment. Equatorial sites are occupied by two trans positioned N atoms and two Cl atoms; Cl atoms lying in axial positions are essentially more distant from the Cu atom (Table 1). Each Cl atom is a bridge between the neighbouring Cu atoms, forming two different in length $\mathrm{Cu}-\mathrm{Cl}$ bonds, with $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angle of $143.4(2)^{\circ}$. These bonds are responsible for the formation of polymeric layers parallel to the yz plane (Fig. 2). Within a layer, the shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 4.9835 (4) $\AA$, whereas between two neighbouring layers, the closest Cu centers are separated by cell dimension a. Only van der Waals interactions are between the layers.

The 2-hydroxyethyl substituent at the tetrazole ring atom N1 was found to be disordered over two positions, with almost equal occupancies of $0.562(12)$ for $\mathrm{C} 71-\mathrm{O} 1$ and 0.438 (12) for $\mathrm{C} 72-\mathrm{O} 2$ (Fig. 1). For both positions, OH groups are involved in intramolecular hydrogen bonds $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$. There are also hydrogen bonds $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ (Table 2).

## Experimental

A solution, containing $2.13 \mathrm{~g}(0.0125 \mathrm{~mol})$ of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 75 ml of ethanol, was added to a slightly heated solution of 1-(2-hydroxyethyl)tetrazole ( $2.85 \mathrm{~g}, 0.025 \mathrm{~mol}$ ) in a solvent mixture ( 45 ml of ethanol and 30 ml of n-buthanol), with stirring at room temperature. After stirring the reaction mixture for 10 min , the obtained green crystals of (I) were filtered off, air dried and recrystallized from (ethanol—n-buthanol) mixture ( $v / v=4: 1$ ) [3.55 g, yield 78.3\%]. Calc.(\%): Cu 17.52 , Cl 19.59 . Found (\%): Cu 18.2, Cl 20.1.

## Refinement

The monoclinic unit-cell dimensions of (I) were determined with the indexing program TREOR90 (Werner et al., 1985). The obtained values indicated isotypism of (I) with layered coordination polymers $\mathrm{CuCl}_{2} L_{2}$ ( $L=1$-alkyltetrazole) that crystallize in the monoclinic space group $P 2_{1} / c$. This space group and the atomic coordinates of $\mathrm{CuCl}_{2} L_{2}$ with $L=1$-ethyltetrazole (Virovets et al., 1995) were used as starting parameters for the Rietveld refinement with the FULLPROF program

## supplementary materials

(Rodríguez-Carvajal, 2001). Background intensity was found by Fourier filtering technique as implemented in the FULLPROF program, under visual inspection of the resulting background curve. Correction for profile asymmetry was made for reflections up to $2 \theta=30^{\circ}$. A Marsh-Dollase correction of intensities for [100] preferred orientation of plate-like grains in the sample (Marsh, 1932; Dollase, 1986) was applied.

The Rietveld refinement, performed primarily by using individual isotropic displacement parameters for non- H atoms, revealed rather high values of $\mathrm{B}_{\text {iso }}$ for atoms of $\mathrm{C}-\mathrm{O}$ fragment. From this fact an assumption was made that $\mathrm{C}-\mathrm{O}$ fragment was disordered over two positions. It was confirmed in subsequent refinement by introducing disorder positions for the above C and O atoms. In final refinement, all non- H atoms were refined with overall $\mathrm{B}_{\mathrm{iso}}$ parameter.

All H atoms were placed in geometrically calculated positions, using the program SHELXL97 (Sheldrick, 2008), with displacement parameter $\mathrm{B}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{~B}_{\text {iso }}(\mathrm{C})$ for H atom at C 5 tetrazole ring atom and $\mathrm{B}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{~B}_{\text {iso }}(\mathrm{C}, O)$ for the methylene and hydroxyl groups.

Soft restraints on some interatomic distances and bond angles of ligand molecule, based on a geometric analysis of a large number of 1 -substituted tetrazoles (Cambridge Structural Database, version 5.29 of November 2007; Allen, 2002), were used in the Rietved refinement. Observed, calculated and difference difraction patterns are shown in Fig. 3.

Figures


Fig. 1. The asymmetric unit of (I) with the atomic numbering scheme. 2-hydroxyethyl substituent is shown as disordered over two positions.

Fig. 2. Layered structure of (I), viewed along the $b$ axis. Disordered 2-hydroxyethyl substituent is shown only in position with occupancy factor of 0.562 (12).

## catena-Poly[[bis[1-(2-hydroxyethyl)-1H-tetrazole-кN $\left.{ }^{4}\right] \operatorname{copper}($ II $\left.)\right]-$ di- $\mu$-chlorido $]$

## Crystal data

$\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\right]$

$$
F_{000}=366.0
$$

$M_{r}=362.69$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.3349$ (11) $\AA$
$b=6.7406$ (6) $\AA$
$c=7.3419(5) \AA$
$\beta=105.450(8)^{\circ}$
$V=636.08(9) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.894 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
$T=295$ (2) K
Specimen shape: flat sheet
$30 \times 30 \times 1 \mathrm{~mm}$
Specimen prepared at 100 kPa
Specimen prepared at 295(2) K
Particle morphology: plate, green

## Data collection

HZG-4A (Carl Zeiss, Jena)
diffractometer
Monochromator: Ni filtered
Specimen mounting: packed powder pellet
Specimen mounted in reflection mode
Scan method: step
$T=295 \mathrm{~K}$
$2 \theta_{\min }=5.00,2 \theta_{\max }=100.00^{\circ}$
Increment in $2 \theta=0.02^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

## Refinement

## Refinement on $I_{\text {net }}$

Least-squares matrix: full with fixed elements per cycle
$R_{\mathrm{p}}=0.042$
$R_{\mathrm{wp}}=0.067$
$R_{\text {exp }}=0.086$
$R_{\mathrm{B}}=0.029$
$S=0.78$
Wavelength of incident radiation: $1.5418 \AA$

Excluded region(s): none
Profile function: psevdo-Voigt
48 parameters
21 restraints
H -atom parameters constrained
Weighting scheme based on measured s.u.'s?
$(\Delta / \sigma)_{\max }=0.02$
Preferred orientation correction: Marsh-Dollase function (Marsh, 1932; Dollase, 1986)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ | Occ. $(<1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cu | 0.00000 | 0.00000 | 0.50000 | $0.0309(10)^{*}$ |  |
| Cl | $-0.0624(4)$ | $0.2048(11)$ | $0.2569(10)$ | $0.0309(10)^{*}$ |  |
| N 1 | $0.24708(16)$ | $0.3706(2)$ | $0.583(4)$ | $0.0309(10)^{*}$ |  |
| N 2 | $0.2982(2)$ | $0.19676(13)$ | $0.595(3)$ | $0.0309(10)^{*}$ |  |
| N 3 | $0.2308(2)$ | $0.05581(18)$ | $0.577(3)$ | $0.0309(10)^{*}$ |  |
| N 4 | $0.1358(4)$ | $0.1377(3)$ | $0.553(4)$ | $0.0309(10)^{*}$ |  |
| C 5 | $0.14654(16)$ | $0.3314(4)$ | $0.545(5)$ | $0.0309(10)^{*}$ |  |
| H 5 | 0.09292 | 0.42403 | 0.51621 | $0.0309(10)^{*}$ |  |
| C 6 | $0.3006(6)$ | $0.5643(10)$ | $0.5973(16)$ | $0.0309(10)^{*}$ |  |
| H 61 A | 0.24602 | 0.66346 | 0.56434 | $0.0309(10)^{*}$ | $0.562(12)$ |
| H 61 B | 0.33551 | 0.56618 | 0.49731 | $0.0309(10)^{*}$ | $0.562(12)$ |
| C71 | $0.3778(18)$ | $0.641(2)$ | $0.768(3)$ | $0.0309(10)^{*}$ | $0.562(12)$ |
| H71A | 0.41791 | 0.74586 | 0.73283 | $0.0309(10)^{*}$ | $0.562(12)$ |


| H71B | 0.34071 | 0.69633 | 0.85467 | $0.0309(10)^{*}$ | $0.562(12)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.4451(15)$ | $0.489(3)$ | $0.862(5)$ | $0.0309(10)^{*}$ | $0.562(12)$ |
| H1 | 0.42627 | 0.38207 | 0.81168 | $0.0309(10)^{*}$ | $0.562(12)$ |
| H62A | 0.31564 | 0.60902 | 0.72756 | $0.0309(10)^{*}$ | $0.438(12)$ |
| H62B | 0.25331 | 0.65967 | 0.52039 | $0.0309(10)^{*}$ | $0.438(12)$ |
| C72 | $0.3987(12)$ | $0.565(7)$ | $0.539(4)$ | $0.0309(10)^{*}$ | $0.438(12)$ |
| H72A | 0.38957 | 0.48960 | 0.42321 | $0.0309(10)^{*}$ | $0.438(12)$ |
| H72B | 0.41727 | 0.69967 | 0.51599 | $0.0309(10)^{*}$ | $0.438(12)$ |
| O2 | $0.479(2)$ | $0.480(6)$ | $0.684(5)$ | $0.0309(10)^{*}$ | $0.438(12)$ |
| H2 | 0.46854 | 0.35907 | 0.68929 | $0.0309(10)^{*}$ | $0.438(12)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Cu}-\mathrm{Cl}$ | 2.234 (7) | N3-N4 | 1.350 (11) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}-\mathrm{N} 4$ | 1.979 (10) | N4-C5 | 1.316 (4) |
| $\mathrm{Cu}-\mathrm{Cl}^{\text {i }}$ | 3.008 (7) | C6-C71 | 1.49 (2) |
| $\mathrm{Cu}-\mathrm{Cl}^{\text {ii }}$ | 2.234 (7) | C6-C72 | 1.48 (2) |
| $\mathrm{Cu}-\mathrm{N} 4{ }^{\text {ii }}$ | 1.979 (10) | C5-H5 | 0.9300 |
| $\mathrm{Cu}-\mathrm{Cl}^{\text {iii }}$ | 3.008 (7) | C6-H61B | 0.9700 |
| O1-C71 | 1.41 (3) | C6-H62A | 0.9700 |
| O2-C72 | 1.42 (5) | C6-H61A | 0.9700 |
| $\mathrm{O} 1-\mathrm{H} 1$ | 0.8200 | C6-H62B | 0.9700 |
| $\mathrm{O} 2-\mathrm{H} 2$ | 0.8200 | C71-H71A | 0.9700 |
| N1-N2 | 1.346 (6) | C71-H71B | 0.9700 |
| N1-C5 | 1.321 (15) | C72-H72A | 0.9700 |
| N1-C6 | 1.478 (8) | C72-H72B | 0.9700 |
| N2-N3 | 1.291 (7) | $\mathrm{Cu}-\mathrm{Cu}^{\text {iv }}$ | 4.9835 (4) |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N} 4$ | 89.8 (7) | N1-C6-C72 | 115 (2) |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\text {i}}$ | 90.8 (2) | N1-C6-C71 | 125.5 (14) |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\text {ii }}$ | 180 | O1-C71-C6 | 111.5 (15) |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N} 4{ }^{\text {ii }}$ | 90.2 (7) | O2-C72-C6 | 110 (2) |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}^{\text {iii }}$ | 89.2 (2) | N1-C5-H5 | 126.00 |
| $\mathrm{Cl}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 4$ | 92.6 (5) | N4-C5-H5 | 126.00 |
| $\mathrm{Cl}^{\mathrm{ii}}-\mathrm{Cu}-\mathrm{N} 4$ | 90.2 (7) | N1-C6-H61B | 106.00 |
| $\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 4{ }^{\text {ii }}$ | 180 | N1-C6-H62A | 108.00 |
| $\mathrm{Cl}^{\text {iii }}-\mathrm{Cu}-\mathrm{N} 4$ | 87.4 (5) | N1-C6-H62B | 108.00 |
| $\mathrm{Cl}^{\text {i }}-\mathrm{Cu}-\mathrm{Cl}^{\text {ii }}$ | 89.2 (2) | C71-C6-H61A | 106.00 |
| $\mathrm{Cl}-\mathrm{Cu}-\mathrm{N} 4{ }^{\text {ii }}$ | 87.4 (5) | C71-C6-H61B | 106.00 |
| $\mathrm{Cl}^{\text {i }}-\mathrm{Cu}-\mathrm{Cl}^{\text {iii }}$ | 180.00 | H61A-C6-H61B | 106.00 |
| $\mathrm{Cl}{ }^{\text {ii }}-\mathrm{Cu}-\mathrm{N} 4{ }^{\text {ii }}$ | 89.8 (7) | C72-C6-H62A | 109.00 |
| $\mathrm{Cl}^{\text {iii }}-\mathrm{Cu}-\mathrm{Cl}^{\text {iii }}$ | 90.8 (2) | C72-C6-H62B | 109.00 |
| $\mathrm{Cl}{ }^{\text {iii }}-\mathrm{Cu}-\mathrm{N} 4^{\text {ii }}$ | 92.6 (5) | H62A-C6-H62B | 107.00 |
| $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}^{\text {iv }}$ | 143.5 (2) | N1-C6-H61A | 106.00 |
| C71-O1-H1 | 109.00 | O1-C71-H71A | 109.00 |
| C72-O2-H2 | 109.00 | O1-C71-H71B | 109.00 |

## sup-4

## supplementary materials

| N2-N1-C6 | 122.6 (7) | C6-C71-H71B | 109.00 |
| :---: | :---: | :---: | :---: |
| C5-N1-C6 | 129.4 (6) | H71A-C71-H71B | 108.00 |
| N2-N1-C5 | 107.9 (5) | C6-C71-H71A | 109.00 |
| N1-N2-N3 | 107.9 (6) | C6-C72-H72A | 110.00 |
| N2-N3-N4 | 108.4 (3) | C6-C72-H72B | 110.00 |
| $\mathrm{Cu}-\mathrm{N} 4-\mathrm{N} 3$ | 127.6 (3) | $\mathrm{O} 2-\mathrm{C} 72-\mathrm{H} 72 \mathrm{~A}$ | 110.00 |
| N3-N4-C5 | 107.5 (8) | $\mathrm{O} 2-\mathrm{C} 72-\mathrm{H} 72 \mathrm{~B}$ | 109.00 |
| $\mathrm{Cu}-\mathrm{N} 4-\mathrm{C} 5$ | 124.1 (9) | H72A-C72-H72B | 108.00 |
| N1-C5-N4 | 107.8 (9) |  |  |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2$ | 0.8200 | 2.3500 | $3.08(3)$ | 149.00 |
| $\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 2$ | 0.8200 | 2.4600 | $3.02(3)$ | 126.00 |
| C5—H5 $\cdots \mathrm{Cl} \mathrm{l}^{\text {iv }}$ | 0.9300 | 2.7200 | $3.34(2)$ | 126.00 |
| Symmetry codes: (iv) $-x, y+1 / 2,-z+1 / 2$. |  |  |  |  |

## supplementary materials

Fig. 1


Fig. 2


## supplementary materials

Fig. 3



[^0]:    Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2648).

